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PREFACE

The work on Lumped Element Impedance Transformers is one of a series

resulting from a study carried on in the Electrical Engineering Department

of the Carnegie Institute of Technology on exponential line section pulse

transformers. In particular this report covers a generalization of the

problem considered by T. J. O'Donnell (an earlier report in this series)

in "Lumped Circuit Analogs of Tapered Transmission Lines".

This work described in this report has been supported jointly by

Carnegie Institute of Technology and Office of Naval Research Contract

N7onr 30306



Introduction

The transient properties of tapered transmission lines for use as

pulse transformers have been extensively investigated and described in

earlier reports of this series. One report has dealt with the possibilities

of lumped circuit analogs of tapered transmission lines. Owing to

restrictions placed on certain of the network properties incorporated in

these analogs there has been reason to believe that more advantageous

broad-band transformations could be achieved by a modified analytical

attack on the problem. This report is concerned with such a modified

attack and shows, in fact, that improved characteristics can be obtained

i.e. greater bandwidth for the same transformation ratio, or greater

transformation ratio for the same bandwidth, with a specified number of

circuit elements.

This report constitutes a dissertation presented by David H. Geipel

in practical fulfillment of the requirements for the degree of Doctor of

Philosophy in Electrical Engineering at Carnegie Institute of Technology.
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SUMM(A.f

This thesis is concerned with the synthesis of lumped element net-

works consisting of three, four or five meshes which act so as to trans-

form impedances, independent of frequency. The networks are designed

over all--without specified impedance con..tions at interior Junctions--

by applying a necessary and sufficient condition for impedance transfor-

mation to the impedance determinant of the complete network. Within this

framework, steps are taken to insure single band-pass operation; and,

wherever possible, simplicity and econony dictate the selection of elements.

The bandwidth ratio, the ratio of upper cutoff frequency to lower

cutoff frequency, as a function of impedance transformation ratio is used

as a criterion of performance, and expressions for this parameter are

given for each of the networks considered. In the three and the five mesh

cases, networks corresponding to maximum bandwidth ratio are obtained.

The means of finding the value of source resistence which gives optimum

matching over the pass-band and the voltage transfer function are indicated

by examples involving three, three mesh networks. Experimental verifica-

tion of the theoxy and of the efficacy of assuming lossless elements is also

included.

In addition to allowing the realization of impedance transforming

networks with larger bandwidth ratios and much greater flexibility than

hitherto available, this investigation seems to indicate that proper ex-

ploitation of the freedom made available by relaxing the condition of

impedance matching at interior junctions will lead to superior tapered

filters.



-2-

INTRODUCTION

The purpose of this thesis is to present a simple means of synthe-

sizing impedance transformers, using only lumped inductors and capacitors,

that have wider bandwidths and greater flexibility than those hitherto

available. This greater flexibility is manifested in the ability of those

networks to permit, for any given impedance transformation ratio, a ranFe

of bandwidth ratio values. This is in contrast to the previous network

designs which possess a strict one-to-one bandwidth ratio versus imped-

ance transformation ratio characteristic. The approach used in the work

that follows depends on treating a network of the required complexity as

a complete entity rather than designing basic sub-units which are then

cascaded to form the complete network. It was felt that by doing this

the constraints implicit in requiring that interior junctions be imped-

ance matched would be relaxed; and, therefore, one would be more free to

choose component values that lead to improved network designs.

A great amount of work has been done on all kinds of impedance

transforming structures. Modern requirements for broad band impedance

matching devices have led in the recent past to a Freat amount of inves-

tigation of ttpered transmission lines. Most work has been done on the

transmission lines utilizing an exponential taper because of the relative

ease of mathematical analysis and physical realizability. In this type

of line the capacitance and inductance per unit length vary, reciprocally

with each other, as an exponential function of distance along the line.

Burrow1)and Wheele 2 )were among the first to describe the steady

References will be numbered consecutively, and appear in the bibli-
oFraphy at the end of the thesis.
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state behavior of such lines. More recently Schatz and Willi

have analytically and experimentally determined the transient response

of these structures and found that they are best suited to transforming

extremely short duration pulses with fast rise times and high peak powers.

Unfortunately, these structures are physically large and unwieldly espe-

cially where larger ratios of transformation are involved. In an effort

to avoid this difficulty some work has been done on a transmission line

utilizing a helically wound inner conductor in which either the pitch

or the turns density is made to vary in an exponential fashioPi) . This

is in contrast to the original method of using an exponentially flared

tubing as the inner conductor.

In addition to the helical line as a means of circumventing the

undesirable length of the exponential line some effort has been directed

towards synthesizing lumped element analogs of the tapered transmission

line. These are generelly referred to as tapered artificial lines or

tapered filters.

Tapered filters designed to operate letween different impedance

levels are not a recent inovation. Patents issued to Nortok6) and Dietz7V )

indicate methods of designing tapered filters. Norton seems to be the

first to have used the idea of determining a dissynfietrical circuit which

is equivalent to a symmetrical section plus an ideal transformer.

Gladwin (8 ), using the equivalences of Norton, shows many applications

of these circuits in addition to showing that such networks must be of

the tsnd-pass type. Dietze's method consisted simply of cascadinC symme-

trical sections having identical transfer constants but exponentially

increasing characteristic impedances. Thus, the transition from a low

impedance to a high impedance level is made more Fradual with a consequent
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improvement in performance. (See Figure (1)

In his recent invistigations 0 Donnelf9 )., following the method of

Wheeler and Murnagha 1 0), has calculated the ratio of output to input

image impedances for Dietze's structure and concluded that it approaches

the desired constancy only in the high frequency attenuation band while

having the most rapid variation in all but the lowest pass band. This

in addition to the absence of a general design procedure induced 0 Donnell

to investigate other means of synthesizing tapered filters which could have

ratios of output to input image impedances that were constant, independent

of frequency.

O'Donnell's method consisted of matching on an image impedance basis

dissymmetrical T or n sections which have different input and output image

impedances as showm in Figures (2) and (3).

In the first case treated by O'Donnell the relationship Zi-k - r 2

Z 'k-l

was enforced. This case is analogous to the exponential taper and re-

quired that a symmetrical section of unity transformation ratio with char-

acteristic impedance equal to Z1 1 preceed the transforming network in

order to eliminate a non-realizable impedance. The second case considered

by O'Donnell was predicated on the condition that no non-realizable element

would occur in the transforming network proper. The resulting netv ork

possessed a taper law which he called the Tschebyscheff taper. More de-

tailed references ,,ill be made later to the two networks mentioned above

and to their respective characteristics.

In attempting to synthesize a network possessing certain given char-

acteristics one can either elect to use the classical theory of four ter-

minal networks or the more modern techniques which utilize a function

theoretic approach. The latter are perhaps best typified by the potential

[
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analogue methods of Darlingto 1 1 ) or the two terminal impedance synthesis

of BrunJ1 2). There are available also the network synthesis methods of

Cauer and Bod 1 3 ) which are based on the symmetrical lattice and allow any

degree of approximation to given realizable filter characteristics.

Darlington has developed a general synthesis procedure for re&.ctilv four

terminal ladder networks terminated by arbitrary resistances which will

yield approximations to desired insertion loss functions. Fan 14 ) has

indicated a method for designing reactive networks that will provide opti-

mum matching of a resistive source to an arbitrary load impedance.

Unfortunately, the procedures of Cauer and Bode generally apply to

symmetrical structures and have little application to the problem at hand.

Darlington's potential analogue method as well as his ladder network theory

seems to be best suited for treating cases where a structure having a 6pe-

cific frequency characteristic is desired. Moreover, these approaches

involve great mathematical complexity and the numerical complications are

such as to limit their practical usefulness to circumstances that warrant

the expenditure of the necessary time and effort. Another reason for

treating the problem with classical network theory is the fact that none

of the function theoretic methods allow one to conveniently avoid the use

of mutual inductances or ideal transformers.

As previously indicated, the point of departure between this work

and that of Norton, Dietze and O'Donnell is founded on the idea that the

design of a lumped element impedance transforming structure might better

be formulated by treating an N mesh network as a complete unit. Previous

investigators designed their networks out of sub-units which were then

cascaded in the ways indicated. In all cases conditions are placed on

the imape impedances which exist atpoints interior to the complete struc-
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ture. It was felt that by considering only the overall network, without

any specification of the impedance conditions existing at interior points

of the network, these unnecessary constraints could be avoided thereby

yielding an improved design.

The method to be followed consists simply of applying the deter-

minental condition that is necessary and sufficient for impedance trans-

formation to networks having three, four and five meshes respectively.

Then, within this framework, a set of relationships between element values

which assures single band pass operation is obtained. In all instances

where an arbitrary specification of some of the components is possible the

choice is made on the basis of simplicity and economy of elements. The

parameter of main interest is the bandwidth ratio defined as the ratio of

upper and lower cutoff frequencies, and the expression for this parameter

is derived for each of the networks considered.

Section I includes the derivation of the basic determinental equa-

tions on which the thesis is basedand the conditions to insure impedance

transformation are also indicated.

In Section II, III and IV these conditions are applied to three, four

and five mesh networks respectively. In each case, conditions for single

band pass operation are develope and the bandwidth ratio versus trans-

formation ratio characteristic is obtained. A comparison of these results

with those of O'Donnell's is also included.

In Section V the shape of the input image impedance curve for fre-

quencies in the pass band is calculated, and dimensionless plots are given

for representative value of ".

The value of matching source resistaace that gives the optimum volt-

age transfer charactcristic is determined in Section VI along with repre-
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sentative plots of the voltage transfer characteristic for three networks

of the three mesh type. These networks though designed for the same im-

pedance transformation ratio differ in form and display different band-

width ratios.

Section VII contains a sample calculation of component values for

the three three mesh networks in Section VI along with an experimental

verification of the theory.

Section VIII includes a discussion of certain aspects not considered

in the thesis proper and some suggestions for further study.
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Hero Zik 2 Z2 Z12-1 Z:nd4 Zik - 0

Here Zlk = l E o(k-1) and Zlk  Z11E (a constant)z lk- 1 = I

Figure 1 Dietze's Tapered Filter

Z 3  Zin

-1 *l 2 0- O

ZIk = r2  where r is constant, independent of section

Z11

Figure 2 Exponentially tapered network of O'Donnell

4Z 1  Z~ 2-Z Z-1
1 Z1- - -

Zlk Tkl(x) where Tk(x) is a Tachebyscheff polynomial

Z-1k-l Tk-2(x) wer

of order K and x is equal to P Overall impedance transformation

ratio of n sections is Tn(x).

Figure 3 Tschebyscheff tapered network of O'Donnell
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Section I

DERIVATION OF DETERMINENTAL CONDITIONS PVR IMPEDANCE TRANSFORMATION

The following derivations may be found in reference (15). They are

included here for completeness and easy reference.

Consider a linear, passive, bilateral. four-terminal, n-mesh network

like that shown below.

-- o n mesh

Ein network In E0

Using Kirchhoff's voltage law and writing the mesh equations we have

Ein Zl Il - 3,I2a- hI3 ......... ......... .. -33I n

0 -~,= I1 +Z2  12 "nz3I3  ...................... " AI n

0 = -),.1, -b)I 2 .............. .

Eo  = -),Il -)AI 2  ..... .. . .. ... .. ... .+ ZnIn

Where, Zj is the sum of all of the impedances in the jth mesh,) jk is the

sum of all of the impedances which are common to both the jth and kth mesh,

and I is the current in the Jth mesh.

Solving this system of equations for 11 and In yields

=_) = _ -n-1 -
Ein Ai +  1)E in and I n  (-1) _ .1 - Eo 0N

where A is the determinant of the impedance elements and &Jk is the minor

formed from A by deleting the Jth column and kth row.
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Denoting the input and output image impedances by Zll and Z12 respec-

tively, we can say that, t;, definition, when the network is terminated at

the output by 7,12 the impedance seen at the input is Zl, and placing Zll

across the input terminals causes the impedance Z12 to appear at the out-

put terminals. That is, when Eo = In Z12 then Ein = I, Zll, and when

En = -I, Z11 then Eo = -In Z1 2.

Considering the first of these statements, when

o Z12 1(-)n -1 Ei An - Eo 4 ] EEin All +(l)n E0  An]0= then Ein = ZllA
A A
Inn  _,n-in

Thus, if EO(l+ Z12  - )= ('1) Zl2Ein A, Ein(l- Z11 All) = (-1)EoZ1l A

Z1 1 Z12 Anl Ain
Therefore, Eo (A+ Z1 2Ann) = -E U , - ZI l ) or

A2 + A(Z12-Ann -Z 1 A1 ) - Zl Zl2 (Ai4Ln-Ann) = 0

2
Now, because of reciprocity, Al = ,n,. Also, (Aljinn-A2n) = A A where A

is found from A by deleting the first and last rows and columns. (See

reference 16) Hence, A + Zl2Ann- Zip11 - ZIl Z12 4 = 0 (1-1)

Applying an exactly parallel method to the requirement that if Ein = -11Z1

then Eo = In Z12 yields the following equation.

A - Zl24n + ZlAll - Z12ZI A = 0 (1-2)

Solving (1-1) and (1-2) simultaneously gives the equations for ZIA and Z12.

=ZA and Zl1= A A

These equations now permit a statement of the determinantal conditions

that are necessary and sufficient to insure a network that will transform

impedances independent of frequency. The impedance transformation is Z12ZI1

and if transformation independent of frequency is desired, it is only

necessary to make certain that A K (a constant). K is the impedance
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transformation ratio.

It can also easily be shown from the foregoing that any such four

terminal network can be represented as a T section like that shown below.

za Zb Za =

E All -Ain
zC Zb = ---

Zb = AnA,
- AT

This representation irill be useful in Section V to find the voltage trans-

fer function when the network iS mismatched.

An alternative approach could ",e used because for an n-node network a

system of equations involvinL ,ittances, similar to those for the mesh

analysis, can be written. Similar results are obtained for the input and

output image admittances by exactly parallel considerations. That is, YI

and Y are given by YA " and = and

the requirement of admittance transformation independent of frequency amounts
A11

again to the stipulation that = K. The various minors of A are the

same as previously defined except that A is now made up of the various

branch and node admittances.

In all of what follows the networks will be considered on the mesh

basis. All that can be done on the mesh basis using impedances can be

duplicated by considering node equations involving admittances. Indeed,

there is quite a bit more flexibility available when the nodal analysis is

used because it is frequently eLsier topolotically to include certain mutual

coupling admittances, in hifther order networks, than it is to achieve an

equivalent coupling impedance in a mesh structure. In order to partially
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restrict the content of this thesis, however, the additional degrees of

freedom available through the use of a nodal analysis will not be ex-

ploited. Thus, the remainder of this thesis will be directed towards a

study of networks whose elements are regarded as impedances and whose

structure is such that the condition = K is fulfilled.
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Seotion II

THE THREE MESH NETWORK

In this chapter the determinantal condition required for impedance

transformation is applied to a three mesh network. Constraints are intro-

duced so that single-band-pass operation is assured, and the networks thus

evolved are analysed to determine their bandwidth ratio characteristics.

Consider the impedance determinant A for the three mesh network shown in

Figure (4).

Where,
Z1 )A )Z 3 4a4i

-)" Z2 ) 3 Z2 +,3 'z

Z12 - A11

The condition that zj- - K corresponds to the requirement

that (z2Z3 -) ,) = K(ZlZ2 -), ).

This equation will be sEtisfied and a simpler geometric configuration will

result if ),is made equal to AK * Then Z3 = KZ1 , which requires that

)j,'+)'+Jai, Kj,, + KJ, + K)o or sin e j,3=W-,a

),- K), + (K- 03 . +

will certainly be realizable if),,,j,,and ), are realizable and if

K = 1 " (Throughout the thesis K is regarded as being greater than or

equal to unity. If K I is desired, it is only necessary to turn a net-

work designed for K = I end for end.)

Under the conditions mentioned abovo, the determinant A becomes

6~ -9 PZ 2-K5I and Z11  6n A4n 1 /_A _

3WK).~ KZ1L'V
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This thesis is primarily concerned with structures displaying single

band pass operation. Since a pass band occurs when Z11 is real, it is

desirable to minimize the number of poles or zeros of Z1 1. This implies

that, since A and A are both ultimately rational functions of frequency,

it would be desirable to enforce the condition that e be contained as a

factor of A . Furthermore, this consideration suggests that aside from

economical considerations it would be wise to make the impedance elements

in the network correspond to simple configurations. For example, it would

be imprudent to make ),A or ),, represent a parallel resonant circuit.
2 -a 2.

Now, A = ,2- 2 - Z2  - 2KZ,),4
2 A L A

A = K Z2 (Z, - )-2K), (z,+ ), and =Z .

Thus, - 1 K z2  (z 2- 2Kj,' (z +,
Z IK - Z2

2 Z2 (2-1)

In order that A be a factor of L in this case requires only that

Z1 + "'- = 9 Z2  (.here 9 is a real constant) or that
4K

A,, +jz +Jii +dL- = 9 (du +,'" +)aJ).

,vK

Since )a, WK'ia , this in turn lecomes ,, + 1(

Keeping the series impedances in the first two meshes of the same kind, ie

VI ,, and expressing) , as , aj,, + bj,, we have

[, + a(1 + -L ) j + (l+b+ -L ),A = V (.+ K)),,

Assuming that (,L) is a function of frequency, which is of course the only

case of interest, this condition will be satisfied if and only if
b

[a+ a(l +.) ] = and (1 +. b + -) = 9 (1 +4K)
K
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Equation (2-1) becomesupon substituting the values of Z11 and J,j,

zi =LLEa~c)~ 2 (J"~) + 2[ (I~b) (a4) ")f(~) ZL2V] (2-2)

In order to determine the frequencies that the network passes it is only

necessary to determine the regions where Zl1 is real. In the networks to

be consideredthese regions will lie between adjacent zeros of the real

function offaJ given under the radical sign in equation (2-2). Zeros occur

when

=-2[ (1+b) (a+a)- Kb) ± )Ja(+) (a+,)- -7 -41 a44.- F I(1+b)- -29')

2 [(a + )2 a2

= -E (14(b)- a Yj $(a+c)2 K!It.L±) + Jb~a4cc)+ j2.+bf-.29W
K+[(a + a,)2_ a 2--

or finally when

-[(l+b)(a'o))- a ] t /29t(a ') 2-  a2]+ ,[a(l+b)-(a+-)b)2

a + 00)2 ]

In the case where , represents a capacitor and ,3arepresents an

inductori.e.,where)1 A- 1 - and)Ax Jwo,the zeros of Z, occur when

' = - 1 =  = -[ (l+b) (a+-)- (a+*)" a] + J'a(l+b)'(a4.a)b

),& 2_a

where o = ' If upper cutoff frequency = f2 and lower cutoff freq-whre A/= Loco . 2

uency = f1,the bandwidth ratio # is defined as and is given by

== [_(l+b)(a+o,)- -Tj + At (a+,) A K, + Jfa(l+b)-(a--)b?

'i' iI (l~)(a r) ab 1(&+0,). F- + ka (+b). (a~a)b)
K 7LK K
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It will be more convenient in the work that follows to expressA as

90 2  + (2-3)

where M is given by H = 2 (a) 2 _ J2] + Ka(l+)°(a )b?2 (2-4)

Thus,a network has been arrived at that has an impedance transfor-

mation ratio K and a bandwidth ratio 4 provided the impedance elements

are related as follows, =,V :#

) = a,,,+bh )J3 =K),(K/) 1  (K)),

and the constants ca,b &.nd V satisfy the two equations

c+ a(l + 1) = V(2-5)
W/K

(I + b +k) =9(1+ ) (2-6)

It can be seen thatby using the two equations aboveboth V and =

can be eliminated from the expression for M thereby making M a function

of the two variable constants a and b. The values of a and b can be arbi-

trarily selected subject to the limitation that = = O, a = 0 and b = 0.

The function M can now be analysed to determine whether there exists an

admissible choice of a and b that will yield an optimum bandwidth ratio

for each value of K.

Substituting into (2-4) the value of (c + a)= M becomes

29 2 + Ea(l~b)-b(ao)2
M = __ / Fa (2-7)[(4) 1) ?

EI/b(9Kh4 K 2 (2 272

[(l+b)-2'- XV- 2
which may in turn be written as M = 1 - (2-8)

But V' = + andb)( thus '2-K"+2(1(2-e)

2
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2 2or (1+b)' 2 - (b+YL
orK K 14/K

WK K /K

Hencesubstituting these results into (2-8) and noting that V = 1(b+ AL)

M 1- (b+ 4_j-) 2 [(9' 2 1) 2 = 1a 2 /( 1 K

S K AK
K (bb+(~J (b1 + j2 a+

Nwr b )1 2V = b(V +L)

Now that M has been obtained as a funotion of a and b (or b,) only,

K K

the conditions previously mentioned( a -0, a = O,mnd b = 0 )can be

studied in order to see how a and b may vary. These constraints are

necessary if all of the impedance elements are to be realizable. Certain-

ly the admissible values of a and b must lie only in the first quadrant

of the a, b plane. Now since = -a I±AK and - . + 1 it
vK K 14WK

>
is necessary, for 0 = , that

=• a K -- or that b = a(l-wK) - --
wK - - K 

Thus, the region of admissible values of a and b corresponds to the shaded

domain shown in Figure (5).

It is of interest to establish whether or not there are any allowed

values of a and b which, for any given K, make M and therefore/d a maximum.

This can be done by finding out whether or not there are any interior

points of the domain at which M "- 0 and M = 0. Such points may repre-
ba
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sent values of a and b at whichyc is a maxima. If there are no such

points then the maximum M that can be achieved corresponds to some point

lying on the boundary. Using equation (2-9) for M and setting )M = 1 M =0ab I b,

yields the following equation

2(bra[b+-l*-K=-a( 1+ )] = 2b,.(b -2a)

2 2
b I - bta +_.... (b1-a) - a(b,-a) (1-K) = b - 2ab1

[l- ~ (_g2]
or E-a(14vK)J

-a -) = a(--- - a('4 . Hence, b, a, K
11K .a K 14K El 1)]

A(K

Setting IM 0 yields the equation

-2(b, + a 2L. - a 2(b 1 -2a)(- .iL
14K vK wK

Solving this for a yields

114K bK

If the two conditions, _jX = 0 and 3 H = 0, are to hold simultaneously,

-2
it is necessary that b, [l- a = El- a.1 ) or that, substi-

tuting for a,
b 1.J.. (1 1 .i.n(b±-.7 4 El- k%K b, + 1).

,vK 14K I*/K 14K wK

Solving this for b, leads to the expression b1 = i -2 wK
14vK (1+VK)

with the result that b1 = -2 . : - .
(w -l) (K7l) (K-1)

Thus, b +.- =b = -2: L and b- _ (1+..2.) =.,K
14K (K-1) 14K vK-1 K-1

It is apparent that for K>l there is no b 0 such that nd are

simultaneously zero. Consequently, there are no interior points (ab)

where # is a maximum. Attention will therefore be directed to a study
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of the cases where a and b lie on a segment of the boundary line. These

boundary cases correspond physically to networks having one or two less

elements than the general three mesh network and are therefore simpler

and more economical structures.

The first of the boundary cases to be considered corresponds to

making o = 0. From equation (2-6), b KK - and from equation(2-5)W K

= a. Hence, b = (l-kl)a - #/K Also, as shown in Figure (5)

a 1Since b. = b + b = (1iK)a * and substituting

this into equation (2-9) for M yields

i (1-I,/)a a(K-1) 2 2

K al .. )+ _...L 2 - K +7j Lis.
4/K 1*WK I4K #/K

It is clear that M will be a maximum when a takes on the smallest
permissable value;that is, when a = 2 or when b = 0. Under these

conditions M is given by
(2-10)

K = (K-l) 2  (K-l) 2  12

K 2 + K , .K+l) K K

(14k/K) 14K

From the equation given above for M it can be seen thatby allowing

a to take on larger and larger values, M can be made to take on as small

a value as desired. This means that, by varying a between a
(14/K)

and a =00, A may be varied between unity and the value corresponding

to M as given by equation (2-10).

The next boundary case of interest is when b = 0. Equations (2-5)

and (2-6) show that in this case C - a i and V =
1)hK 0 K 1WdK

Figure (5) shows that a must satisfy 0 -1a 1- - 2 *The reduced expres-
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sion for M is most conveniently found by using equation(2-4) because when

b = 0 it reduces to M = 2V + " (1-2V) . Since V -= M becomes

22
M4 = -2+ - a *- It can easily be seen that maximum M4 occursZ K (a+)

when a = 0 or when a K in which case M assumes the same value
(1-woK-)=

as in the previous instance where 0 and b = 0 (as it must).The equiv-

alence of both expressions can be realized by noting that & is
K

identically equal to 2 + K- In additionby varying a between
1-/K K (4/K+I) I

the limits given above the value of M may be made to vary from M = 2

to-M 2 + K-K
1-6,/K K (l-iK)

The final boundary case is when a = 0. Then b - 0 and O = -

Equation (2-9), with a = 0 ,gives the result M = 1- (K-) b2 Kr

K(b 1 + L")
M = 1 - K-1 __l Maximum M obviously occurs when b, takes onK [1+( -,Kb ~2

its smallest value. The smallest value b, can have is b., --- whichI+K

corresponds to b = 0. Then M =1 K-i (K-) . This
K-I+ - 2+vi-!) 2 K

checks with the previous result obtained for b = 0 and a = 0. For b > 0

M will assume all values between M I and M = 2 because the limit
K 1bK

of M as b approaches infinity is M = K1 - i_K RK*

The conditions and results of the various cases considered are sur:-

marized below.

Case# 1= Ov b =a(l*K)- - -4K and a -2
(1"'K

2 2
M1=- (K-1 I a

K C(K-.1)~ a 1KI
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Case#2 b =O, a and 0 S a =S1-- 2

M 2--L + a2

l-iK K(a+ol) 2 */K+l

Case#3 a , b =O, and +=Z

b 2  2b
M~ r zy= 2

(l+b)

The circuits corresponding to the separate cases summarized above

are shown in Figures (6),(7), and (8). The bandwidth ratio characteristics

of the various circuits may be summarized by saying that the circuit for

case# l will,for any K,permit a bandwidth ratio between unity and the max-

imum value that can be achieved using one of the three mesh networks con-

sidered. This maximum value is found by using the M given in equation

(2-10). If the desired # is such that _2 M M , the circuit for
1-WK K

case#2 may be used whereas if 1 < M= -- L is necessary,the circuit for
K 1-WK

case #3 may be used.

In general,circuits corresponding to case#2 or case#3 should be

used wherever possible because these circuits have higher order zeros at

w = O0 and the upper frequency cutoff characteristics will therefore be

sharper than for the circuits of case sl

The graph shown in Figure (9) portrays the regions of realizable 4

and K along with three boundary curves. The curve labelled "Curve I" rep-

resents the maximum values of # that can be obtained using a three mesh

network of the type considered. Curve II displays the values ofp4 at which

the transition from a case#2 network to a case#3 network takes place.

Curve III shows the lower limit of values of X that are obtainable with
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networks considered in caset3.Also shown in Figure(9) are the bandwidth

ratio characteristics that may be obtained using the designs of O'Donnell.

The dashed curve corresponds to the so-called "Exponential Taper" filter

while the curve showing the bandwidth ratio characteristic of the "Tache-

byscheff Taper" filter is coincident with Curve II.

This identity with Curve II can be shown by taking O'Donnell's ex-

pression for A as a function of K for an equivalent Tachebyscheff filter

and reducing it to the terms of this thesis. For a Tachebyscheff tapered

filter of three meshes(two sections) the impedance transformation ratio
* T 2

is given by the equation K = CT2(x) where T2 (x) is a second order

Tschebyscheff polynomial and is equal to T2 (x) =(2x
2-1). Thus,

AK = T2(x) (2x2-1). x is a parameter used by O'Donnell and is equal to

(2 = ~ so that WK =2IA 2~ 2

2
Now K+and solving for A 2 yields

2 + 1KK1+IFVK
-l l

This expression is identically equal to the expression used to plot the

transition curve(Curve II) shown in Figure(9). It can also be shown that

these identical curves represent the characteristics of circuits that are

identical. Thusthe Tschebyscheff filter networks may be regarded as a

special case of the more general three mesh networks herein considered.

It should perhaps be noted that the improvement in the maximum

7 See page 31 of reference (9a)
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value of,4,represented by Curve I, is not obtained at the expense of ad-

ditional impedance elements since the circuit involved has the same num-

ber of elements as the Tschebyscheff tapered filter. In addition to the

realization of larger bandwidth ratiosthe three mesh networks studied

provide a much greater degree of flexibility in as much as,for any value

of K, a range of values of A may be obtained. This is in contrast to the

strict one to one relationship between y6 and K displayed by the exponen-

tial taper and Tschebyscheff taper networks. This feature seemj to be

rather important since it is quite conceivable that in many instances an

impedance transforming network designed to operate between fixed imped-

ance levels with a specified bandwidth ratio would be useful. In this

case the theory presented here would permit the design of a structure

that combines both functions of impedance transformation and filtering

while the exponential or Tschebyscheff tapered networks would, in most

cases, require the cascading of a symmetrical filter to obtain the de-

sired bandwidth ratio.
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Section III

THE FOUR MESH NETWORK

In this section the same general methods used in Section II will be

applied to the synthesis of a four mesh structure having the form indi-

cated in Figure (10). In this case,

Z I -j " 0 z1 =))/ +)/A +)"

A ) where Z2 =

o j4, Z3  -),v Z3 =),, +0 J, + oi

-),V 0 -, , 4 =), +J, +JY

As beforeif 12 to be made equal to a constant K,it is neces-

sary and sufficient that = K. This is equivalent to requiring that
Ann

Z2Z3Z4 - Z ) Z2)-z = K [ZIZ2Z3 - Z3), - zi).]A (3-1)

The impedances . , ) . ,and)jy will all be regarded as being of the same

type. In other words,),3 may be expressed as (g/p) andhv.may be written

as (gl),L) where g and g, are real positive constants.

(3-1) will be satisfied if Z4 = K Z, and if Z3= P Z2.This implies

that

)y,/ +,$. +,j, = K(V3, +,J,, +)y ,) or ;,.y K), +(K-g±jz, +(K-1)),,y (3-2)

and that
2 2 2,J,, += +,: £(j j +i. +,,) or ,, +(g+gj4/z =-: L + L(l+gp",

2 2
Thus, f = + C1(1+g) - (g + g1 ))., (3-3)

In order to reduce complexity and to keep the series impedance elements

as much alike as possible the coefficient of,, in (3-3) will be made

equal to zero. Hence, 2

F,(+g) = (g + gj) • (3-4)

From (3-2), qy will certainly be realizable as long as K = g,
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(g217K) 2 (K-gt) (K-1)

= L.K 2 K (K-3i)

Figure 3.
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Once again, /, =a = .4 /• A a re found by ex -

panding the appropriate determinants with the result that A' = Z2Z3 - '

and(AZ= ( t1 ZiLZ2 )v.) (Z3Z4-dJy) - 2;"L;.).zv~j Y Substituting

in the values of Z3 ,Z4 , ,, and)iv in terms of Z1 , Z2 mnd ;, gives the

following 2 2 ~ 2 3.2'

I (A 2 g

Z - )A - 2e Z 1 2),A - 2gg1,),L + g±), .

29 2 U(K - 2 +2 2 (2Z ,2 + 1

Finally, -)jj_2 (Z 1z2 + ~-4f4 * (-)
K (Z 2 _ K 2

If A is to be a factor of A. it is only necessary to make

-+ -, & = -V (2 - ] o

If we again let)1,, = =J.and )/v = a)a£ + b)/,. the last equation be.comes

or (-1~)~42 I + C(l+b)+(l+g)(a-o,)+ La A 2. + [(l+b)(l+g)+ - =

91 2 1

91,
Zf~~ + _A(lg 3.. 2 9~~)

Matching coefficients of ye 1ields the following equalities

(a + m) =' (3-6)

(l+)+(l+I)(1.-b)+ 1 (+) +o 1+ & b+ [ (1)'(l+g) (3-7)
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(lb)l~) - = (l+g) 2- fX 2(b)(lg) + Alb" = )2or, substituting for (1+b) its

value in (3-7),

A C(l+g)..-b) + I9'K 2(3-8)
g1

12 2

Under these conditions I~= 1A. E- 2V] and

/5 ....

vL W K+1+ar b)- ~a +b) 2

This,it will be noted,is exactly the same form as the expression obtained

for the Z1 1 of a three mesh network as given in the equation immediately

preceding (2-2). Ifas was done in the three mesh networks, ojL is made

an inductance equal to Lo and)/i is made a capacitance equal to Co, the

equation for the bandwidth ratio will be identical to that obtained in

the three mesh case. That is, from equations (2-3) and (2-4),

2V [(a4a) 2- a2  + ,a(l+b)-b(a-o)f 2
+= . where M = X 2 (3-9)

[(l+b)(a+a) - K

The quantities V,C,a,and b are now,of coursesubject to different

constraints. There are alsoas previously indicated,conditions on g and
2

g1| namely, g 1 
= K and (l+g) = (g+gl). This latter equation can be

solved for g, in terms of g and K and yields

-- K [l + 41z+f)
2(l+g) + Kp ].

The condition g, = K can now be examined to determine the requirements,

if anyon g. If g, < K, then K + ) =K or
El+ 91+ 9 K o2(1+g) il Kl

1+- K 2g+l . Squaring each side, 1 + 4 ) +4g + 4g2

or I 1 which is satisfied for all K _ 1.
K
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It is again possible in principal to'express H in terms of any two

of the variatles a, a, b, g, g, and V since there are four additional

equations interrelating these variables. It would then be theoretically

possible to determine the values of the selected coordinates at which M

is a maximum by the same method used in analysing the three mesh struc-

ture. The range of values over which the selected coordinates can vary

constitute a region that can be determined by the condition that g, a,

b and a all be greater than zero. It could then be determined what if

any points of maximum M occur within the admissible region. These points,

or if there are none, the boundary of the region would then serve as a

guide to the design of a four mesh structure with optimum bandwidth ratio.

Unfortunately, equations (3-6), (3-7), and (3-8) are of such a

nature that, when uubstituted into the expression for M, the two simul-

taneous equations obtained by making the partial derivatives of M equal

to zero are extremely intractable. For example, if M is reduced to a

function of b and g, only, the two simultaneous equations are cubics in

b with coefficients that are complicated non-linear functions of g1.

Any general algebraic solution of these equations appears quite impracti-

cal.

For this reason, attention will be confined to a survey of the

boundary cases; iA,where one or more of the variables a, b and a are zero.

This corresponds to networks having one or two less elements than the

general case.

Before considering the separate cases it will be convenient for

what follows to reduce the general expression for M to a different form.

Applying equation (3-6) to the expression for M labelled (3-9) we obtain

the following results,
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2 22 2

[(1+b)V- AkeC c(i+b)jgb ]2
KK

( 2)[(+22 2a - 2V (
or M = 1 - (3-10)

K

Using the general constraining equations marked (3-7) and (3-8) it is

possible to find a more convenient form for [(1+b) -2 ]. The algebraic

manipulation involved is considerable and is therefore included in Appen-

dix . The result is that 22 2K (2[(+ 2- j- _ = (b +K. ) "Since

C~lb)-2w KK K-1

this is a completely general result it may be substituted into (3-10)

thereby yielding = (b+ -1 )2 ( 2. (2)M = - -EI, .. . ,)(3-il)
.K [(i+b)g - K]2

Because of the irrational nature of the equation giving g, as a function

of g and K it will be better to express g as a function of g, which, by

solving (3-4), turns out to be g = gl[IF . For g - 0 it is necessary

that WE 4 g 4 K.

Consider now the case when a = 0, 0. 0, and b - 0. Equation(3-11)

reduces to

1 = ) The equation for b as a function

(l4b)2 (1-)g2K-(g2
of g, is also derived in Appendix I and is b = f(g1 -!)(gK)-2(K-g)]

2 (K-g1 ) (K-i)
From this,

(b+K IK.&/ = { (g~rl) (g2K) - 2(K-g 1) + (K'g 1)) = g 1  and
K-1 K-i 2 (K-gl) 2(K-l)(K-g 1 )

(1+b) = (g Ir) (g!K)-2 (Kg) + (g -1) (g2-K)-2K -g)

2 (K-i) (K-gl) 2 (K-1) (K-g.)
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or (l+b) = K )
2(K-1) (K-g1 ) . Substituting these results into

the equation for M gives

M = -1C...... (3-12)K 2 K +2 (K-_1)g 17K+2 (K-g 1 ) 1 2(gl.K)

In order to maximize M it is necessary to make the quantity in

brackets as small as possible. This will t- achieved if g, is allowed

to assume its lowest value. The range of values over which g, may vary

can be determined by noting that b, a, and g must all be positive if the

networks are to be realizable. It was shown earlier that if g ? 0 then

WK 4 g- = K. Using the equation above for b as a function of g, and K
> 2 •2

it can be seen that for b 0 O (grl)(g_-K) = 2(K-gl) . Expanding this

we obtain the requirement that g3 . 3g2 + 3Kg 1 + K - 2K - 0. Thus, g

must be such that g, Z g'1 where g' satisfies the above expression when

the equality sign is used. To determine for what values of g, a 0

consider that when a = 0, c = V. Appendix I includes an equation for

in terms of b and g1; that is, F - + [K(g 1 "1)+g1 (K-gj)J . Since it
2 K (K-i)

is already required that 1 <,VK = gL = K, all terms are positive and

= V can never be negative. Thus, the only restrictions on g, are

gj - < K. ( g, is never allowed to actually take on the value K and

K is always considered greater than unity , except in limiting cases,

because division by (K-gl) and (K-1) occurs frequently).The allowed val-

ues of gj, when a 0 0, constitute the region shown in Figure (14) that

is bounded by the straight line g, = K and the curve g, = gj. The curve

is obtained by solving numerically the defining equation of g, given

above.

Because of the freedom in the choice of gl, M, and therefore 3,
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may vary continuously between a minimum and a maximum. The maximum value

of M can be found by inserting the appropriate value of g1 
= g' into equa-

tion (3-12). The minimum value of M can be found by allowing g, to ap-

proach K in equation (3-12) and noting that the result is M = I . Plots
K

ofjA versus g, for representative values of K are shown in Figure (15).

The next case of interest is when b = 0, a => 0, and a _ 0. Under

these circumstances the general expression for M given in equation (3-11)

reduces to = 12 "2 Equations (3-7) and (3-8),

K(K-l) 2'

under the condition that b = 0, can be used to determine c, a, V and

(02-, A as functions of g, alone. This is done in Appendix II with the
K

following results.

9' 2K g,- g, K
2 K (K-1)

[-~+3gi - 3Kgj - K + 2K2

2 (K-1) (K-gl)
3 2 52+K 3

S [ g3(l+K) _ 6Kg 1 + (5K +K) g 2K

2 (K-i) (K-gt)
2 2 2

2 2 (g1 -K)4K(K-g)-(g17-K) I
4K (K-i) (K-gl)2

Substituting into the expression given above for M the equations for 92

2 2
and (9 - K )

MW 1- (grK)[4K(K-gj)-(g:-K) 4K (K-1)
K(K-1) 4KZ(K-i) (K-gl)4 '2K,-g7-K' 2

2 22
S1 - (gt-K) [4K(K-g1 )-(g -K) 2 (3-13)

K [K(,:-)-(K-gj)2 I2

The exprewsion for a shows that for a 0 0 g, must be such that g, = p1
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where g- is the same as previously defined. Referring to the equation

for a makes it apparent that, if a is to be greater than or equal to zero,

it is necessary that g, obey the condition g, = " where gj is defined

as (14K) g" . 6Kg' + (5K24K) g" 2K3= 0. Thus, the admissible values

of gj, for the case where b = 0, form a reEion in the (K,gl) plane which

is bounded above by the curve g, = g" and bounded below by the curve

g1 = g1 • This region is also shown on Figure(J4). Equation (3-13) is

not an obvious monotonic function of g, as was the expression for M in

the case where a = 0. However, for selected values of K, the variation

inp as g, goes from g, g1 to ga = g, can be easily plotted. This is

done on Figure (15), and it can be seen that only for larger values of K

does )a monotonically increase with increasing g1.

Finally, there is to be considered the case when = , a 0 0, and

b = 0. If a = O, then a = 9 and the general expression for M, equation

(3-2i), reduces to K- 2 K-1 (+ _)

M = 1_ K-1 -1 (b+K.K-

a [I + b - (b + K

Using equations (3-7) and (3-8) with c= 0 allows one to find b and a

as functions of gj. Thisis carried out in Appendix III with the consequence
that 2

that (g!-K) 2
2 (K1) (Kg1)2' [2(K-gl)+(g1-K)]

and b = [g1(K-l) ( 1-K)- 2(K-p1 ) ) Also included in Appendix III

2(K-l) (K-g1 )
2  K

is a calculation of the quantity ) in terms of g and K

(b+ )K-i
alone. That is,

(b+ K'-g) =2

b - 2
(K-1) (gr-K)
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Hence, M11- . (3-14)

2 
1+2

(K-i) K)

From the equation given above for a it can be seen that the condition

a 0 does not impose any additional restriction on g, since g, is always

required to be such that K gl S K, and therefore all tems are positive.
2 3

The condition b A 0 however requires that gl(K-1) (g 1-K) - 2(K-g 1 ) . By

expanding these terms this condition becomes
3 2 2 3>

(1+K)gl 6Kg 1 + (5K + K)g1 - 2K = 0

> so
which is equivalent to stipulating that g1 = g1 0 g1  is the solution

of the above expression when the equality sign prevails. Thus, the lim-

itations on g, stated above may be interpreted to mean that when o = 0 g,

must lie in a region of the (K, g1 ) plane bounded below by the curve

91 = g, and above by straight line g, = K.

Expressions for the bandwidth ratio of the four mesh networks con-

sidered have been obtained in each of the separate cases by determining

M as a function of g, and K where M and # are related by the equation

= + g, is an independent variable subject only to the
!1 - wM

requirement that it be between certain limits, and it is this freedom in

the selection of g, which is responsible for the flexibility that these

circuits possess.

The regions of admissible values of g, for each of the three cases

are shown on Figure (14) and are delineated by plots of the defining equa-

tions for g' and g". The derived equations for M were used to illustrate

on Figure (15) the bandwidth ratio as a function of gl for representative

values of K. Each of the curves on Figure (15) consist of three segments

each of which corresponds to one of the three cases a = 0, b = 0, and

=0.
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The networks associated with each of the three cases are shown

schematically in Figures (11), (12) and (13), along with the equations

for the component values.

The considerable amount of algebraic manipulation required to find

the various reduced expressions for M as a function of g, and K alone was

checked in the following manner. Arbitrary admissible values of K and f1

were used to compute w, a, 9, and b. These were then substituted in the

original general expression for M. The resulting value was then compared

to the value obtained by using the appropriate reduced expression involving

K and g, only. In addition, it can be seen from Figure (15) that the re-

duced expressions checked with each other at the end points of the allowed

interval of g1 . In other words, the curves are all continuous at g, = gl
N

and g, = g1 .

Figure (16) displays the range values that p4 may assume for any

given K using one of the four mesh structures herein considered. O'Donnrll's

curves of 8 versus K are also included so that comparison can easily be

made. Curve I is the plot of Y as a function of K when a = O and b = O.

Curve II is the lowest value of 0 obtainable with a network having b = 0.

This latter curve is only equivalent to the case b = 0 and cc = 0 for lergcr

values of K as can be seen from Figure (15). Curve III is the plot of

= + I which is the lowest attainable value of y when a =0.
-K - I

Figure (16) may be interpreted in the following manner. Values of Y3 te-

tween Curves I and III may be realized by making a = 0. Values of jbe-

tween Curves I and II may be realized by making b = 0, and values of )3

between Curve II and# = 1 can be achieved by using the case where a = 0.

The dashed line corresponds to the A versus K relationship displhyc.d by

0' Donfell's exponential taper network having four meshef und shows that
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higher values of le ma be achieved by using this network when values of

K less than K = 14 are used. It should be mentioned, however, that the

exponential taper network uses one more element than the network which

corresponds to Curve I. The A characteristic of the Tschebyscheff taper

network is, as it was in the three mesh case, identical to the character-

istic for the case when a = 0 and b = 0 which is shown in Figure (16) as

Curve I. One can thus conclude that from the standpoint of maximum band-

width ratio the four mesh structures derived in this section are an im-

provement over the networks of O'Donneli only for larger values of K.

However, as in the three mesh case the four mesh networks possess a flex-

ibility that 0 'Donnell' structures do not have. That is, any value of

4 between unity and the maximum value as given by Curve I is realizable

by using either one or another of the three cases considered in this sec-

tion. The practical utility of this feature was discussed in Section II.
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Plot of Bandwidth Ratio Versus g, for Selected Values of K
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Section IV

THE FIVE MESH NETWORK

In this section methods similar to those used in Sections II and

III will be employed to obtain expressions for the bandwidth ratio and

component values of the five mesh structure shown in Figure (17).

For the network shown the impedance determinant A is equal to

The minors All and 6nn are equal
o),Z Z2  -)u 0 0

A 0 Z3  -J, 0 tA = Z5 A- '-r(z 2 Z3

0 0 V .

) 0 o z An = Z- A- i (Z3Z4 -~~

Therefore, the condition that A = K requires that
Ann

z5 A -)1 (Z2 Z3 -,) = K [Z1 A -),A (Z3Z4  )

Following the method used in the previous cases, the impedance elements

,;}j9 dvP and)jy.-will be made the same kind of an impedance as ,, . Hence

we can write )e = gJ,, , = glj,z . and )'1-- 92 JI, where g, g1,

and g2 are real positive constants. Thus, 2 i222

Z5 = K Z, +1  
' Z 1 ( Z2 g 2 KZ4 ) ! J , (Kg4"g2)

5

2
In order to keep Z5 as simple as possible the conditions Z = Fz z

4 K 2

and Kg2 = g2 2 will be enforced. With this stipulation Z5 = K Z1 . The2

condition that z
conditio 1hf = Z2 implies that 2

(Vl, +.J, + ',) = A + )j +},4 )

Substituting for ) ,J,, , and)jsa and noting that 42 =4 this equation

2 g
becomes )'Y,/+ (g 1 + 92), :Xjaa,. + (l+g)f,),, or
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ZwK+2p-) (LK)+2g'

Fi7+e22'

Fi L 2Fue 18
22

oOP K e LO

co gA 29(K-g 2)+(K-I)b)

T b
o ( a:g (+/) s2= ' (g-wj)

--. 1

b = j (149"/K" 2g ) z=lbP =2g 2 a
,1K+1 21 (9) 1+g

22

-,, + ) (K-)

Fipure 19 (/9+2g) (1.4,)+2g 2 2



2 2.,1i = 12aa+ E E(l+g) - (gl+ g2 )J ,. (4-1)

In order to make all of the interior series impedance elements similar
2

we will let Y(l+g) = (g1+ g2 )" Since g2 = twhi, his becomes
g gg(+g) = 1 + E orgg + ')

+1or +1 =g ( g) (4-2)

andof course, 2 =/K (g +(/ (-)
K (l + g)

The requirement that Z5 = K Z1 means that (a-' + +),- ) is
equal to K(J., +),, + o- ) or that,)r. = Kd +(K'g 2 );,- +(K-1l).. (4-4)
Since)- ,),., and),,- are assumed realizable and K - i, - will certainly

be realizable if g2 
< K. This will be true if (g-i) <= i/ (l+g) ,and there-

fore it is always true because K is always greater than or equal to unity.

Hence,)6 .3-is realizable for any value of g.
The expression for A can be obtained by substituting into the deter-

minant the values of j ,,, , and}- in terms of>1, the values of Z.
and Z4 in terms of Z1 and Z2 and expanding by minors. Doing this one ob-

tains the following
2 & 2 Zg -2 v 2= (KZl-)) g-[ a4-z1zZ3)- -2Kg 2 z + g 2W ,- g2 Z3 J

S2 
22where Z Z(Z Z-gj, ) g2  .Z, Using the relations 22 34 K 2)AK 92 2 = g2 Z Z 2

and Z4  K -thisbecomesg ~g

ZjZ, Z.h
Thus,A = (K Z2-_,,)E- 2K glZA+ or

E., Z2 (-7 -2
or
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2 2 z z 2

z2  ( 9 2,,A )
g

In order to make Aa factor of A it is only necessary that

- + 2- t -1 2) (4-6)

As was done in the previous sections, the series elements),, and}23 will

be regarded as being similar to}., . That is, ) 1 = ),?and )j, = P;a..

Also,;- will be made such that ;,a. = a , + b d- The quantities o,, P,

a, and b are all real, positive constants. Now,

Z1 =3,, ++. (a)h" + (l+b),..

Z2  ,.+) )ILL + (l+g)),.

Z 3  J + +,v= )a.+ (g+g 1 ) ,A'

Substituting these equations into (4-6) and denoting o4L by x leads to

_ (a+c)x+(l+b) Ix+(l+g) XPx+(g+g .) 3)- (a+c)x+(l+b) 1+ K- g++ I

Itx + (l+g)] C (X +1_4)(Px++) 2 ]

g

If both sides of this equation are expanded and arranged in descending

powers of x and if coefficients of like powers of x are made equal, the

four equations shown below are obtained.

7--) -z- or (a + h= (4-7)
g g

1 + b = I + g) (4-8)

+ P (4-9)
22 g7

I / 2g k=9 .

(4e0



-47-

When these equations hold,

which becomes upon putting in the values of Z-4 and
, J

Z (a4o) 1 )A.L +(l+b))-a~Lb -29

This is again precisely the same form for Z1 1 as was obtained in the three

mesh case and the four mesh case. In order to find the bandwidth ratio

in this instance, assumingA is an inductance equal to Lo and ),a is a

capacitance equal to Co, use may be made of the mathematics immediately

following equation (2-2) in Section II. The result is that the bandwidth

ratio is given by w 29t (a+) 2 - a 2  2
_ _= ywh ] + (a-b)2

1i - #4 [(1+b) (a-a) - ab 2
K"

and the quantities a, a, b, and V are interrelated by equations (4-7),

(4-8),(4-9), and (4-10).

Because of the fact that (a+-) is again equal to $ use may be made

of the algebra in Section III which alters the form of M from that given
(l) 2 -  2  2

above to [C+b) 2 V _ b ](V2- a
[ - 12

K"

Since equation (4-2) shows that g, is a function of g and K, equa-

tions (4-8) and (4-9) show that both V and b are functions of g and K

only. Thus, M may be regarded as a function of only two "free" variables,

namely a and g. (K is always considered as being fixed). The values that

a and g can take on may be found by requiring that all of the elements

that make up the network be realizable. Thus, it is necessary that a, t,

ar P, and g all be greater than or equal to zero. From (4-9), P 0 if

O,and if a =0. From equation (4-10), b 0 only when (g+gl) = 2g2.
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Since g, = g )( g) + we require that 1+ 2g or that (I-WE) I- 2 g .

Thus, b =0 when g Y/'hib. The condition that a 0 is the same as

the condition a - F. From equation (4-8), 9 1 and from equation(5-10)
1+g

b - wRT g= - [1+92. Hence, 9 )
(A+l) 2 g2 (W+l)2g(l+g) 2 g (l+g) (l )

or V = lWi) 2,q(WK+l+g) = WZK+l) (J+2g+ 2or = =2
2(I+g)2 (1_ _) g) 2 (l~el il Vr

One can interpret these derived conditions by saying that, for all

of the elements to be realizable, the admissible values of a and g must

lie in the closed region of the (a,g) plane bounded by the lines a = 0,
g. - , g = W, and the curve a ,&=2g)(1 This

2g (l+g)2(lwK)

region is sketched in Figure (18).

The next step is to determine whether there are any interior points

of this region at which M is a maximum. This, of course, corresponds to

finding whether there is a maximum bandwidth ratio. In the three mesh case

the search for a maxima in M was carried out by noting whether there were

any points in the given region at which the first two partial derivatives

of M were simultaneously equal to zero. In this case the absence of any

interior points of maximum M is most conveniently demonstrated by consid-

ering )-i and instead of solving simultaneously -- = 0 and _M = 0.
3a aa Dg

The expressions for -M and M are quite simply obtained since b and

are functions of g and K only.

The approach to be used depends on the fact that if there is a max-

ima in M at some point in the region then it is necessary that at that
2•M a2

point 0 and < 0. If both these conditions are not satisfied at

any point interior to the admissible region of the (a,g) plane, the ma.-
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imum value of M will be achieved at some point on the boundary of this

region.

Using equation (4-11) and remembering that b and 9 are not functions

of a we find that 2

2 2 -2 2-)V~~

-[(19)( )- b K
K Ko '2_ 2 _ _~b~

or (1+b) If LM 0then a b-L
Ka K b a l+b

Thus, for every value of g in the allowed region there is a point (a,g)

where 1_ = 0 since the restriction on a was that a 5 V and clearly b <13a 2M > talpit hr M
for all b. It remains to show a2 > 0 at all points where 0.

Now, 3
2 M -(l+b)![1(l+b)- -jK1 + D((l+b)- 3*2 9bal b3-2 = =!2 (1+b)12 - b] K..

[K'(l+b) - b]6

22 2 b2+ ab~L±b) + 3A 3ab(l+b)
or -M2 =-[(2Vlb)-)2- 2 - K K K

K K CV9(l+b) - b

Substituting for a its value of 9V b yields
l+b

=9' (l K)L-. The only term in this expres-

K

sion which could possibly make negative is the term [(l+b)2  - 2
From equation (4-8), l(b jg9Jl +1 = 2b+Fl2(b-9)+1 = 2(b- l+g. l + l +gl+g) i 1+g = i+ •

W'K [14K-2g2 ISince b == - (1-,-)(l*/" )'
2(b-g)+I Z 6v(l',-2g 2+(i.K+l) (g2-l) (Y-l)-g 2(Jil)

(1+9) ( R) ( 2+g)2 (1-wi)
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or 2(b.V) +1 = 1 (lWv-g 2 ) Now,
'/K+l (1+g) 2  "

2 = +2(b-g)+i (K-1)(14 -2 2 )2  2
(14b) 2-2V Kj K + 2 2bV +1 =+1K(SKg+l) 24g 2(l+g) 2 Kj (i+g)

-2 2 -2 K-I

2 _) -(l-WK)+ g +(l-W-g2) I =
#K+1 (+g) 2  4g 4g 2 (-+g) '

22

From this it can be seen that [(i+b) -2V - k] > 0 for all K > 1.
K

2
This means that 2M is always positive at the points where = 0 and

there can therefore be no interior points of the region at which M is a

maximum. Since the highest values of M occur on the boundary, Ltt(ontion

will be directed to a derivation of expressions for M that apply to the

various segments of the boundary.
2_ 2

The reduced expression for f:(i+b) -2V - h] just derived allows the

general equation for M, equation (4-11), to be written as

(K-1) (V2 a2 (

2 2 abj 2

(1+g) 4g [9(i+b)- K

The part of the boundary corresponding to g = 0 is of no practical

interest because if g = 0 then b and 9 are infinite. The next part of the

boundary to be considered is the segment corresponding to a = 0.

When a = 0, 0 < g / and M = 1 K-1
4g2 (i+g) (i+b)

-2 2 2= V 2 (1 2= [(,/K+2g)(l-WK)+2923

From equation(4-10), b = 4 /K 22 Hence,S 1-IVK 2glg"4g 2 (l+g) 2 (1.1 2

and M = - (li/K) 2 (K-i)

[(iK+2g) (l/K)+2g2 ]2 (4-4)

It can be seen from this that M can be made to vary between some minimum
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and some maximum value by letting g vary between zero and g = +-
2

Of course, g can only approach zero as a limit in which case M approaches,

as a limit, the value M = 1. When g takes on its maximum value of
K

/, + M becomes (4-1)F2 M = 1 - [ +] (4-15)
El" +2 +K)

Physically this corresponds to a strict ladder network because then

) = ad AZ + b)12 is zero since a and b are both zero. Thus, it is pos-

sible to achieve any value of 93 between the two extremes represented by

the two limiting values of M given above by making a = 0 and selecting

the appropriate value of g. The range of -A values obtainable when a = 0

is shown in Figure (22) as the region between Curve II and Curve III.

The second case of interest is when b = 0; i.e., when g = + .

Equation (4-12) yields the fact that when b = 0 M is given by

(K-) ~ 2) - (9g a2)M =I . . .-)W_. - 1=i -K
4g2 (1+g)1 2(14/K) El+ ]2  2

Since a is the only variable and V is not a function of a, it can easily

be seen that minimum M occurs when a is as small as possible and maximum

M occurs when a is as large as possible. The sketch in Figure (18) shows

that for this case a may vary between zero and some maximum value which

is also equal to g. Thus, the minimum value of M when b = 0 is

M - (K-1) 2 (4-16)
2(1K)[1 + + (1

/Z2

This equation can easily be shown to be equivalent to equation (4-15).

This is as it must be because both equations correspond to the same phys-

ical configuration. Thus it is possible, by making b = 0 and varying the
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value of a, to achieve higher values of M and consequently higher values

of )8 than were possible by making a = 0. The maximum value of M when

b = 0 is found by letting a = in which case M is given by

M - (K_1)2 -
2K (1*K) [1 + + ]2K

The region of 4 corresponding to the case when b = 0 is iflustrated in

Figure (22) as that region lying between Curve I and Curve II.

The final case of interest for the five mesh networks is when c = 0.

Then a = Oand the general expression for M labelled (4-12) reduces to

M = 1 -
(K-1)

2

4g 2K (,-g)2[.-+ _

Using the equation for b,
(1+b- ) = It-.12. +1 = wK(1K-2g2) + = ti-1) 2 )+2gj(l+g)

K K K 2g(l+g) (14av) 2g(1+g) vf

or (l+b- k) = K-l+2g(4/K)

2g (l+g) k) " Substituting this into (4-18) gives
(Kl2

M = -- - 2 (4-19)

[ (K-l)+2g(g+ ,/K)2

The maximum value of M occurs when g takes on its maximum value of

g /--- K in which case
2 ca(K-1)

2

M = I . (4-20)K El+ /K+ 2 Li]i 2

2
This can be shown to be identical to equation (4-17). This must be true

since both expressions hold for the case when b = 0 and c = 0. As g is

alloiied to approach zero the value of M approaches zero so that by taking

thc nppropriate value of g between zero and g 1 +W any value of
2
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between unity and the value corresponding to the M given by (4-20)

may be obtained. These values make up the region shown in Figure (22)

that lies benAath Curve I.

The physical configuration of the networks corresponding to the three

separate cases considered and expressions for the component values are

given in Figures (19),(20), and (21). In each case it is possible, after

selecting the desired value of 4 and K, to calculate all of the compon-

ents in terms of either Lo or C0 . Lo and C0 are determined upon speci-

fying the nominal impedance level Zo  and the nominal design freq-

uency fo - w2y •

As in the four mesh case, the maximum value of 0 that can be achiev-

ed by using a five mesh network of the type considered is less than the

value of 7d obtainable with an exponential taper network of five meshes

until relatively large values of K are used. However, the values of S

realizable with the above mentioned network are greater, for every value

of K, than those possessed by the Tschebyscheff taper networks which util-

ize the same number of elements. Also, the possibility of varying A

continuously between unity and some maximum value, at each value of K,

is again in evidence and therefore represents an improvement over the

strict one-to-one - versus K relationships of the Tschebyscheff and ex-

ponential tapers.
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Plot of Valuas of 9 Realizable With a Five Mesh Network
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Section V

IE INPUT IMAGE IMPEDANCE

Until this point in the thesis attention has been directed solely

to determining the bandwidth ratio characteristics and the component val-

ues of the various network configurations. Expressions for the input imago

impedance were derived for the three, four, and five mesh networks and

were used to find the frequencies at which the image impedance became real.

These expressions it turned out were all of the same form. That is, re-

gardless of the number of meshes considered,

ZI (+<K) +(Il+b)) -(a 2Li2V

It is assumed that these networks are to be driven by a voltage

source having a purely resistive impedance and terminated in a purely

resistive load. The source and load impedances are assumed to be constant,

independant of frequency. Since the image impedance as given above is a

function of frequency, the question arises as to what the source and load

resistances should be to provide an optimum impedance match over the pass

band. In order to arrive at a solution to this problem it will be useful

to determine the shape of the image impedance in the pass band. Of course,

it is only necessary to consider Z1 1 and R. because Z12 = K Z1 1 and

= K Ra . (RL and R. are the load and source resistances respectively.)

Now.,A& and;,& were previously designated as = and =_L.

Using the previous notation that 0LoCo = Oro =R

z -L 2 _ja2  "2 + (2..Zl j WCo (a+oc) - - 2[(a+oc)(l+b)- Lb 2 + (l+b)' - -2V]
1 0 K K
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o4 ZA Cj-a b- 40 C(14b)2 - 2V1
oruY -1  2 T -_22 E c)1b- - +

_____ Go2 2 2_a

Denoting C by Zo this equation can be written as

Z /=o2L 2 2 2 2 where r, and

are related to the upper and lower cutoff frequencies by ri = 2 fl and

2 -- rf In terms of cc, a, and b

2 (1b) (ao'-) - f29t(a~oa) a, ] + j(a-ct)2  (i,,,'4~2  'z (.,)2 [(l )(,c)- - K (,+i)- j,
[(a+a) 2- -K2

2= 2 a2 (5-2)

C(a+o) - K2

In any given case a, a. n1 and v 2 are fixed quantities and therefore

Z1  may be plotted as a function of the dimensionless frequency v. As an

aid in constructing this plot and for other purposes it is convenient to

determine the maximum value of Z1 . This will be done by setting ___4dw

equal to zero. For

dZ - 2  2 2 2
ff4w 1~i 2[(r12v2 r1-2 _v2 2(12

d"n d-a 2 -W2).,2i(w =02

v4 ~ 2  or YT flff ul12When r takes on this value Z 1 1inequal to
Z which is

Zimx ~Z/U c) 2  ) (ff TZ2  (IT 2 )L~
IT 1112

or ..,,, Zo , 2. ( ±2 (5-3)(""ts '2.,
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Section VI

THE VOLTAGE TRANSFER FUNCTION

In this section the voltage transfer function riln be derived for

three circuits of the three mesh type which are subject to various de-

grees of mismatch. Upon graphing these results the degree of mismatch

yielding the best response will become apparent; this in turn will assist

in the selection of the proper source resistance for optimum matching.

Using the equivalent T section given in Section I, the impedance

transforming network terminated in a purely resistive load RL and driven

by a source having a voltage Ein and an internal resistance Re may be

represented as shown below. A

" g a

eo Zc A

0 =ZI± +(R+Zb+Zc)I 2

ing for I2, $1

=i I2Rl =R zc LE~

(R*+ A1  A 
A ll A ii4 Aj

( + )(RL+ -.- z % . RL  -e, + '

A A

Since ci2 tA (see Section I), we can write
Eo = 12 RL R 2

Ein R.RLLA+ RLArm+ RsA1 1+ A

I-

t.x
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Nowq -K and Z, /- .Hence O 0 Ain
' .nh h Ein (R.RL+ KZ11 )A + 2KRtn

Because this is an impedance transformer RL= K Re and

5_ = - Re Ain . It has been shown that Z11 can be written as

zTo- ./2-4)(A 22.2) and that the maximum value of Z11i
2_2

Z 131 5 - ZQ ,(,i-1) where Q = [(a+c) 2  . Let Ri= g Zmax.($

is a constant less than or equal to unity and may be regarded as the

mismatch factor.)

Substituting the above quantities into the equation for ED gives

Ein

the result Eo  = 2 2

En 2nn + Zo(ITY -l)S ("2""1)(-r. 2.r2) ].
Y+ .2, 1 (AO -1)

For the three mesh network in Section II,

,&i ,,K),, Z 2 )r ,3&

z

,. Z2- , 7 )iA' 13

and A =Z2  :. ,Z)

E - 2 + )2En z z + O m -( .+r)] Z2

Also from Section 11, +1 2++A)

+b (-an 2+ b

= ±.+1+a ol % +b (mes) w2 +(1+b)]
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and oJ N- = J. Using the above equalities

)1z V'C0  00

1 - ] " (av2-b)CR 2 -(-11+)]

2 Vj(A 2(, 1

(a,40)) _u 1~ )[2-(l / j..l 3j..J Tr 2_ .~ [ ( + (V2..)(2r2 .i2

From this expression the quantity 2Ao /ay be plotted as a

function of r and V, merely by selecting an appropriate combination of a,

c, and b as given in Section II. This calculation was carried out for three

representative circuits and the results are displayed in Figures (24),(25),

and (26). In each case * was made to take on the values )6 = .6, Y, = .8,

and P6 =1.0 ; it can be seen that in each case the value Y = .8 yielded

the best response. For Y. = 1.0 the response is extremely flat over the

center portion of the pass bandbut the response is poor in that the ef-

fective pass band is narrower than in the case that $0 = .8. On the other

hand,while the curve for Y, = .6 rises at a lower frequency and falls at

a higher frequency,the considerable dip in the response at mid-band may

be quite undesirable. Thus,one must compromise in the selection of Y/ to

obtain a response which possesses the widest effective bandwidth while

retaining the required degree of flatness.

The curves for w = .8 are combined in Figure (27) to show the differ-

ence in bandwidth possessed by these circuits. The values of a, a, and b

for the circuits corresponding to the various voltage transfer curves are

given at the head of each figure. These same circuits were constructed

and used to experimentally check the theory, and the curves in Figure (27)

are reproduced for comparison with the experimental results in Section VII.
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Plot of Voltage Transfer Function of Mismatched Three Mesh Network

With a 0, .'.O b 2.25 and K 9
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Plot of Voltage Transfer Minction of Mismatched Three Mesh Network

With a b 09 .25 and K 9
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Ficure 26

Plot of Voltage fransfer Funotion of Mismatched Three Mesh Netvork
W:ith =b=Ol &=-2, and X=9
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Section VII

EXPERIMENTAL RESULTS

In order to check experimentally the derived theory three networks

of the three mesh type were designed and constructed. It was felt that,

in addition to checking the theory, the experimental results would give

a good indication of how much deviation from the expected results occurred

due to the fact that the actual impedance elements are neither lossless

nor constant with respect to frequency as assumed.

The first step in the design of the networka, which are the same

as those for which the voltage transfer function was computed in Section VI,

was to select the value of the impedance transformation ratio K. A com-

promise between a high value of K, which leads to less practical values

for ),, and a low value of K, which would too closely resemble a sym-

metrical structure, was effected by choosing K = 9. The values for a,

er, and b were selected as follows. In the first circuit a was made zero

and cc was made equal to unity. Hence, from Section II,

b =w *K - - = 2.25eI4 K

In the second circuit both a and b were made zero, and this choice required

that cE 1 = .25. This circuit is equivalent to a Tschebyscheff
14wK

taper network having three meshes. The condition 0 0 and b = 0 was

enforced in the third circuit so that an example of maximum bandwidth

would result. This condition made a equal to a = j =

~liwhI) 16

The remaining quantities to be specified are

Zo = L- and to
'C Lo Co

The choice of wo was dictated by ouch considerations as practicability

I0
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of element values and ease of measurement with the result that uo was

made equal to wo = 2Wf0 where fo is 7.5 Mc. . The choice of Zo in each

case was such that Ra =P Za2 = 50 when V = .8 a

As an example, the calculations leading to final component values

will be carried out for the first circuit where a = 0, a = 1, and b = 2.25.

1 = wo = 2r fo = 2n 7.5 x 10 6 =47.2 x 10 6

wLO C0

Now, Zl £max 0 a+) 2 . 2 (R2 - = = 62.5. T1 and "2 are

found from (5-1) and (5-2) respectively to be ri = 1.285 and 12 = 2.2

Hence, z 62.5 = 62.5 680 2 " .915
2 1

Thus, Lo = Z2 Co and Lo =  1- • Solving for C andL o ,

-12

Co 1 6 =310 x 10 faradswo Zo (68) 47.2 x 10

Lo = (68)
2 310 x 10-1 2 = 1.434 x 10- 6 henries

All of the remaining element values may be determined from these values

for CO and Lo . The circuit corresponding to the values given above is

shown in Figure (28). The element values for the other two circuits were

computed in a similar fashion and are shown in Figures (29) and (30).

The actual method of measurement consisted of measuring the open-

circuit voltage of the source then connecting the circuit and measuring

the voltage developed across the load resistor RL for different frequen-

cies. The results of the test on each circuit are shown in Figures (28),

(29) and (30). It idll be noted that on the graphs TT 2 is labelled 14.75 Mc.
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instead of 15.0 Me. as it was designed to be. This is due to a slight

correction in the frequency of the Q-meer used to measure the induct-

ances and capacitances.

The graphs show a very close agreement between the theoretical and

experimental curves. For the most part, the difference is on the order

of .3db or 3 0/o in the pass band. This close agreement becomes more

important when it is realized that the inductances were relatively low

Q coils. The low self-resonant frequency associated with air-core chokes

of the large sizes required mde them unfeasible so that it was necessary

to employ ferrite core coils that had Qs as low as fifteen, but were more

constant with frequency. Thus, it appears that the assumption of elements

being lossless is not too unrealistic.

!.4
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Section VIII

DISCUSSION AND SUGGESTIONS FOR FURTHER STUDY

The specific bandwidth ratio versus impedance transformation ratio

characteristics ascribable to the various circuits are discussed at the

points in the thesis where they are derived. It may be said in general

though that the approach used throughout the thesis, namely the design

of the overall network, has enabled the design of circuits that are quite

a bit more flexible than hitherto available, and, in some instances, per-

mit the realization of larger bandwidth ratios using the same number of

elements.

There are also certain aspects of the networks considered which

have not yet been mentioned but which are points of some interest. The

first of these considerations is in the form of an inherent limitation to

the application of lumped element, impedance transforming networks. It

will be remembered that from applying the condition &-1 = K we obtained
A~nn

the requirement that the total impedance in the last mesh be K times as

large as the total impedance in the first mesh; ie., Zn = K Z1 . This

can be interpreted to mean that the capacitors used at the receiving end

will be on the order of K times as small as those at the sending end and

the inductors at the receiving end will be K times as large as those at

the sending end. It seems reasonable to believe that this same situation

is inherent in any impedance transforming network because of its very

nature, Frequently this factor governs how large of an impedance trans-

formation ratio can be made while still using components of reasonable

size. For example, at an early point in the development calculations

were carried out for a circuit which wuld act as a voltage transformer,
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giving a voltage gain of twenty, for frequencies in the first six channels

of the television band. Under the assumption of a source resistance of

50 ZA the coils and condensers at the receiving end had quite practical

sizes. The coil and condenser making up the last series impedance, how-

ever, were on the order of one milli-henry and ten milli-micro-micro

farads respectively - which are completely impractical. Thus, when large

values of K are contemplated one must be concerned with practicability as

well as realizability of elements. This limitation is independent of the

number of meshes employed.

Another aspect of these networks that may be of interest is what

might be called an inversion property. In Section II and all succeeding

work the elements dx and 03 were taken to be an inductance Lo and a

capacitance CO respectively. If "a and,)i. are chosen instead to be a

capacitance Co and an inductance LO respectively, the variable r = 2 is

replaced by 1 everywhere it occurs. This has the effect of inverting

all of the frequency characteristics with respect to v = -L = 1. Thet WO
new lower and upper cut-off frequencies, f 1 and f 2 , are related to the

original lower and upper cutoff frequencies, f, and f2 , as followst
" LoCo . LoCo

f LOCO and f2 
= LOCO , Physically, this change injAa and)-

4t f 2  4n-f,
amounts to changing all of the original capacitors to inductors and all

of the original inductors to capacitors. Of course, the parameters a,

4, b etc. are unchanged as is the bandwidth ratio . The practical

utility of this feature is that inversion of the original voltage transfer

function about r = 1 may lead to a more desirable response, and, depending

on the original values of TT and "2 , converting the network in the de-

scribed fashion may lead to more convenient values of Lo and Co . It is

to be realized that this conversion is not equivalent to finding the hal
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of the original network which is also possible.

There are two areas of work not touched upon in this thesis that

would seem to be interesting subjects for further study. The first of

these concerns the synthesis of impedance transforming networks using

nodal analysis. It was briefly mentioned in Section I that the deter-

minantal condition for image admittance transformation is equivalent to

that for image impedance transformation. The advantage of using the

nodal analysis lies in the fact that for networks of four nodes or more

there is no difficulty in constructing a planer network such that all of

the elements on or above the main diagonal in the admittance determinant

are non-zero and independent of each other. Thus, more degrees of freedom

are available than in the case of a similar order mesh system. If these

additional degrees of freedom are properly exploited it would seem quite

possible that superior performance could be achieved. Of course, compar-

ison of two networks should be on the basis of equal number of elements

in each network and not on the basis that both networks have the same

number of nodes or meshes.

The second suggestion for future study involves multiple pass band

operation of impedance transformers. In all of the preceding work steps

were taken to insure that single band pass operation was achieved. It

was for this purpose that A* was made a factor of A . If e is not a

factor of A or if the polynomial in r describing Z1 1 is made of higher

order by introducing more complicated elements, Zl1 will have more than

one band of frequencies where it is real and there will therefore be

more than a single pass band. One such network was designed and it had

three pass bands of nearly equal widths separated by stop bands. Though

the actual voltage transfer function was not obtained for this circuit
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and therefore the sharpness of the response is not known, it would seem

that this type of circuit might be of some use in situations requiring

impedance transformation over separate bands of frequencies.
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Appendix I

DERIVATION OF REDUCED EXPRESSION FOR C(l+b) 2 -.I ]

Use win be made of equations (3-7) and (3-8) on pege 29 which ap-

ply to the general case and are given below.

(A) l+b+ -a = V(l+g), (B) gL (l+g)a-b]+ 2 V

Also, ve have the relation K1(l+g) = (g+g1 ) or g = gj

Substituting into (B) the value of and using (A)

=a= 2 1 r,+b+ Ia ] or(g+g) (g+g,) g1

1 a~l+g- 4 0g2g (g+g= [ 9)

Solving for a yields a = b + g2Lg 21± lA]
2g~g+g1 +gg1 j

Using the equation for g, 94 = 1-: and g 2(Kl)
g K-gE 1 Also,

2g-_(g+g,) 9- 2 22 2= g 2 : g 2 )1 ( -1) -(g1.1) (g2.-K)

(-K) (g-K)

With these relationships the expression for a reduces to

a = b + [2(Kmi) 2(g-l)(g2"K)] (C)
2 (K-g1) (K-i)

From (A) + = + - Eb + t2(K' z)2 "- I )(t-K) I1 gZ) 2 (K-gl,)(K-.1)

2_
V b (g+g.) + -L [ + g-2(K-g) (girl)( U K)J :

g1(l+g) +9g g, 2(K-gl)(K'l)

Substituting 919)--j,, '-g i '"K ) = I .K..=

(g)-K) -K) ' g1  (g2-K)'I.
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and 2(K..gl) 2 (gr.')(grK) = 4 .3gl+3Kg 1 4K..2x I the expression for 9
becomes b + l

K 2(g2-K)(K-g1 )(K-l)

[2g2K(K _(3 2 2
or d = K.t b + :2(g2K)(K'I) - (g1 3g2+3Kg14K-2K

2))
2K (K-i) (g1-l)

The term in th brackets when expanded is

2Kg 2 - 2K2_ 2g2 +2K- g3 + 3g2 _ 3Kg 1" K + 2K 
2

or 2gl +g1 + K- g, 3Kg = (g1-l)[K(2g1 -l)=..gi]

2

Honet= b + [K(2Rj"l)'-R1'
K2K (K-1) (D)

Consider now the quantity [ (l+bf -29 - k ]
K

2 2[(l+b)2.'- k J = 1 + 2b + b2 ( K-1) - 2[ J b + [K(2g(1-
K K K ( 2-K)

= b2  + 2b + El- K(2Kl

= 2bK- l+2b LA+ (K.2

Thus, [(l+b) -_2V 1: [ -~b + which is the desired result.K K K-i

In addition to this result, use is made of equations (C) and (D). (C) is

used to give the expression for b when a is zero, and (D) is used, in a

slightly different form, to show that V > 0 for all admissible g, and K

when a =0.

L.
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Appendix II

DERIVATION OF V, a, e, AND (I- 2) AS FUNCTIONS OF K AND g, WHEN b = 0

The general equations (3-7) and (3-8) on page 29 reduce when b = 0 to

(E) 1+ .Z-a :'(l+g) and (F) .L~l+g)a + 1 112
g1  g1  2 9

Also, of course, g = g, K

Substituting a = -ICV(l+g)-l] into equation (F) yields
g

,L~gfl+g) g-l + = K2.

Thus, 9 .+) 2-(1+.)+ or V(1+g)[ £+L1+9j = (l+g)-
2 (g+g 1 ) g+g 1  2

Now 1g Kjzl 91+1=g (K-1) ,ad g9
(g 1-K) (g1 -K)

K'i'g(2 l 22
_K(_-_) (gg1 -K) --2Kf,"2K-( 2_K)]

Honde , a -- ]g" [2Kg K KI)
(g--) 2 K-2 -gl-K) 2 2o

S = [ 2K)(g")() (2gK]K)

2K(K-1)

To find a, a &ZC~lg.l g1K ~2g-~ K ( -

g K-g1  2K(K-l) (g2 K) 2

a =[(2Kgj-grK) (g,-l)-2(K-l) (s-K)3
2(K-l) (K-g1L)

Expanding and reducing the term in brackets

C3 g2 2
a + 3 1  -3Kg -K. +2K (H)

2 (K-1) (K-gl)

L.



Using (0) and (H)23 22
= - £ = K-g 1 ) (2KK1-gI!-K) - K(.gl+3R,.3Kgi-K+2K2)A

2K (K-1) (K-g1 )

3 2 23
or KIl4K() - 6KR.1 + (5K + K)g1L - 2K] )

2 K (K-1) (K-g1L)

Using expressions for 9and a

2Kg2- 2 K)g 2 K(ll
a2. = 22g,- K [(2Kgg-K(g - (- 1(r

K 4K 2 (1(_1) 2  /+ K (K-i) (K-gl),

-(2Kg 1 -gj7K)t (K-gjf-K(g-i)+4K(2Kg 1g7K) (g-i ( K)(K-i)-4K(K-)girK)2

4 K 2 (K-i) 2 (K-gl) 2

(2Kg-g 2 )2 (g2K)(1-K)+4K(2K-l72  2K'2

_rY I:g g 1 ,(g 1-i)(gj-K)( l)4(Kl (g"1-K)

4X2(K-1i)2 (K-gl)2

Factoring out of the above expression the term (gr1 K)(K-i) leaves

2 2 2 2 _ KK,(2
V2_ P= (g17K) [-(2Kg1 -g1-K) +4K(2Kg 1 -g1 -K)(g 1 -i) - KK ( 17K)J

K 4 K 2(K-g1 ) 2(K-1)

By direct expanuion and collection of terms the quantity in the square

brackets becomes equal to C-g4, - K- 1Kg + 1

2 2 2. 2 2
Ths .=(g 17K)C4JK(K-gj) -(g 17K) J 1

4hB K ~ 2 (K-1) (K-gl) 2 ()
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Appendix III

DERIVATION OF a AND b AS FUNCTIONS OF K AND g1 WHEN c = 0

When cc= O, a = V and the general expressions (3-7) and (3-8) reduce to

i+b+ -La= a(1+) and .LI(1+g)a-b] + = 2
g1 1  2

These can be written 
respectively as

(K) ALSiQ.2LL) = l+b and 12[gl(l+g)-Kg) = .e b - I (L)g 1 g .1 g 1 2

eCg 1(l+g)-Kg ] (1+b) = b - and
Eg1(l+g)-g) 2g

b ECg(l+g)-Kg) - gl(l+g)-g] =- 2gg(1+g)-] - [gl(l+g)-KgJ

-b(K-)g gl(l+g)(gl+2g)

or- 2g +

From this, b -FI + 2g~j + gg2 +2g~g g K 2

2 g2 (K-1)

Substituting for g the value g = g, K makes the equation for b reduce
g 1-K

to

b = [g 1 (K-l)(g 2-K) - 2(K-g 1 ) 3(

2 (K-I) (K-gl) 2

To determine a, the expression for b as given by (K) is substituted into

equation (L). Then,

I-( 3.+g -L a L(l+g- JL) a - I)

g22

or a(l-K) =-L- . Thus, a= g andsince =!?A'g
. 1 g (K-i) g1 g1-K
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2 2
(K-g) (-i)

22

(g -K) 2[2(y-g,) + (g-,j ()

Finally= 2

2 (K-g1) (K-i)

Also of use in Section III is the quantity -when c 0.
b +

From (M), + . [ g(Ki)(g 'K)' 2(K'R) 3 + (K-g1)
b K-i 2 (K- g+)2

Xi 2 (-g 1 ) 2 (K-g)

2 3K-gg 1 K-C)g 17K) 1(g )

and b + 2 (K-g1)2  +K

2 2Kg)

= £gl(K-i)(g -K) + 2g 1(K-g1) 2

2 (K-i) (K-gl)
2

Thus, 21 (g2-K) (KIJ 2 . 1 (0)
b +K-1 g(g7K)(K1)+2g(Kg1) +2 (K- 1)

9:K
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